[NP1] - A short introduction to Numpy¶
Numpy is an essential tool for the Scientific Python.Objectives :¶
- Understand the main principles of Numpy and its potential
Note : This notebook is strongly inspired by the UGA Python Introduction Course
See : https://gricad-gitlab.univ-grenoble-alpes.fr/python-uga/py-training-2017
Step 1 - Numpy the beginning¶
Code using numpy
usually starts with the import statement
import numpy as np
NumPy provides the type np.ndarray
. Such array are multidimensionnal sequences of homogeneous elements. They can be created for example with the commands:
# from a list
l = [10.0, 12.5, 15.0, 17.5, 20.0]
np.array(l)
array([10. , 12.5, 15. , 17.5, 20. ])
# fast but the values can be anything
np.empty(4)
array([4.67030424e-310, 0.00000000e+000, 4.67101322e-310, 4.67101319e-310])
# slower than np.empty but the values are all 0.
np.zeros([2, 6])
array([[0., 0., 0., 0., 0., 0.], [0., 0., 0., 0., 0., 0.]])
# multidimensional array
a = np.ones([2, 3, 4])
print(a.shape, a.size, a.dtype)
a
(2, 3, 4) 24 float64
array([[[1., 1., 1., 1.], [1., 1., 1., 1.], [1., 1., 1., 1.]], [[1., 1., 1., 1.], [1., 1., 1., 1.], [1., 1., 1., 1.]]])
# like range but produce 1D numpy array
np.arange(4)
array([0, 1, 2, 3])
# np.arange can produce arrays of floats
np.arange(4.)
array([0., 1., 2., 3.])
# another convenient function to generate 1D arrays
np.linspace(10, 20, 5)
array([10. , 12.5, 15. , 17.5, 20. ])
A NumPy array can be easily converted to a Python list.
a = np.linspace(10, 20 ,5)
list(a)
[np.float64(10.0), np.float64(12.5), np.float64(15.0), np.float64(17.5), np.float64(20.0)]
# Or even better
a.tolist()
[10.0, 12.5, 15.0, 17.5, 20.0]
A = np.random.random([4, 5])
A
array([[0.20518501, 0.58875353, 0.45166626, 0.09836971, 0.07648559], [0.39507445, 0.49513016, 0.23119691, 0.70292165, 0.36082793], [0.23642025, 0.15254409, 0.93467091, 0.60955493, 0.04942166], [0.66744393, 0.18057559, 0.67351066, 0.24477554, 0.83200592]])
# Get the element from second line, first column
A[1, 0]
np.float64(0.39507445278829356)
# Get the first two lines
A[:2]
array([[0.20518501, 0.58875353, 0.45166626, 0.09836971, 0.07648559], [0.39507445, 0.49513016, 0.23119691, 0.70292165, 0.36082793]])
# Get the last column
A[:, -1]
array([0.07648559, 0.36082793, 0.04942166, 0.83200592])
# Get the first two lines and the columns with an even index
A[:2, ::2]
array([[0.20518501, 0.45166626, 0.07648559], [0.39507445, 0.23119691, 0.36082793]])
2.2 - Using a mask to select elements validating a condition:¶
cond = A > 0.5
print(cond)
print(A[cond])
[[False True False False False] [False False False True False] [False False True True False] [ True False True False True]] [0.58875353 0.70292165 0.93467091 0.60955493 0.66744393 0.67351066 0.83200592]
The mask is in fact a particular case of the advanced indexing capabilities provided by NumPy. For example, it is even possible to use lists for indexing:
# Selecting only particular columns
print(A)
A[:, [0, 1, 4]]
[[0.20518501 0.58875353 0.45166626 0.09836971 0.07648559] [0.39507445 0.49513016 0.23119691 0.70292165 0.36082793] [0.23642025 0.15254409 0.93467091 0.60955493 0.04942166] [0.66744393 0.18057559 0.67351066 0.24477554 0.83200592]]
array([[0.20518501, 0.58875353, 0.07648559], [0.39507445, 0.49513016, 0.36082793], [0.23642025, 0.15254409, 0.04942166], [0.66744393, 0.18057559, 0.83200592]])
(A+5)**2
array([[27.09395103, 31.23416606, 29.72066504, 25.99337373, 25.77070593], [29.10682835, 30.19645549, 27.36542108, 32.52331535, 28.73847609], [27.42009709, 26.54871055, 35.22031879, 31.46710656, 25.49665909], [32.11992075, 26.83836348, 32.1887232 , 27.50767046, 34.01229307]])
3.2 - Apply functions element-wise:¶
np.exp(A) # With numpy arrays, use the functions from numpy !
array([[1.2277522 , 1.8017412 , 1.57092758, 1.10337064, 1.07948663], [1.48449471, 1.64071178, 1.26010734, 2.01964479, 1.4345166 ], [1.26670654, 1.16479381, 2.54637533, 1.83961247, 1.05066328], [1.94924854, 1.19790667, 1.96111004, 1.27733457, 2.29792358]])
3.3 - Setting parts of arrays¶
A[:, 0] = 0.
print(A)
[[0. 0.58875353 0.45166626 0.09836971 0.07648559] [0. 0.49513016 0.23119691 0.70292165 0.36082793] [0. 0.15254409 0.93467091 0.60955493 0.04942166] [0. 0.18057559 0.67351066 0.24477554 0.83200592]]
# BONUS: Safe element-wise inverse with masks
cond = (A != 0)
A[cond] = 1./A[cond]
print(A)
[[ 0. 1.69850361 2.21402412 10.16573055 13.07435843] [ 0. 2.01967094 4.32531738 1.42263366 2.77140409] [ 0. 6.55548197 1.06989529 1.64054123 20.23404359] [ 0. 5.53784695 1.4847575 4.08537554 1.20191452]]
for i,v in enumerate([s for s in dir(A) if not s.startswith('__')]):
print(f'{v:16}', end='')
if (i+1) % 6 == 0 :print('')
T all any argmax argmin argpartition argsort astype base byteswap choose clip compress conj conjugate copy ctypes cumprod cumsum data device diagonal dot dtype dump dumps fill flags flat flatten getfield imag item itemset itemsize mT max mean min nbytes ndim newbyteorder nonzero partition prod ptp put ravel real repeat reshape resize round searchsorted setfield setflags shape size sort squeeze std strides sum swapaxes take to_device tobytes tofile tolist tostring trace transpose var view
# Ex1: Get the mean through different dimensions
print(A)
print('Mean value', A.mean())
print('Mean line', A.mean(axis=0))
print('Mean column', A.mean(axis=1))
[[ 0. 1.69850361 2.21402412 10.16573055 13.07435843] [ 0. 2.01967094 4.32531738 1.42263366 2.77140409] [ 0. 6.55548197 1.06989529 1.64054123 20.23404359] [ 0. 5.53784695 1.4847575 4.08537554 1.20191452]] Mean value 3.9750749687241567 Mean line [0. 3.95287587 2.27349857 4.32857024 9.32043016] Mean column [5.43052334 2.10780522 5.89999241 2.4619789 ]
# Ex2: Convert a 2D array in 1D keeping all elements
print(A)
print(A.shape)
A_flat = A.flatten()
print(A_flat, A_flat.shape)
[[ 0. 1.69850361 2.21402412 10.16573055 13.07435843] [ 0. 2.01967094 4.32531738 1.42263366 2.77140409] [ 0. 6.55548197 1.06989529 1.64054123 20.23404359] [ 0. 5.53784695 1.4847575 4.08537554 1.20191452]] (4, 5) [ 0. 1.69850361 2.21402412 10.16573055 13.07435843 0. 2.01967094 4.32531738 1.42263366 2.77140409 0. 6.55548197 1.06989529 1.64054123 20.23404359 0. 5.53784695 1.4847575 4.08537554 1.20191452] (20,)
4.1 - Remark: dot product¶
b = np.linspace(0, 10, 11)
c = b @ b
# before 3.5:
# c = b.dot(b)
print(b)
print(c)
[ 0. 1. 2. 3. 4. 5. 6. 7. 8. 9. 10.] 385.0
4.2 - For Matlab users¶
|
Matlab | Numpy |
---|---|---|
element wise | .* |
* |
dot product | * |
@ |
numpy
arrays can also be sorted, even when they are composed of complex data if the type of the columns are explicitly stated with dtypes
.
4.3 - NumPy and SciPy sub-packages:¶
We already saw numpy.random
to generate numpy
arrays filled with random values. This submodule also provides functions related to distributions (Poisson, gaussian, etc.) and permutations.
To perform linear algebra with dense matrices, we can use the submodule numpy.linalg
. For instance, in order to compute the determinant of a random matrix, we use the method det
A = np.random.random([5,5])
print(A)
np.linalg.det(A)
[[0.32600516 0.28206657 0.26282316 0.770393 0.3431083 ] [0.16533586 0.44123925 0.19849497 0.73062533 0.68488145] [0.33187007 0.00982615 0.8793322 0.67263088 0.86575286] [0.22878297 0.18961378 0.39589715 0.20554336 0.37801677] [0.29081857 0.31814718 0.22892718 0.08828156 0.43990676]]
np.float64(-0.008387013996040981)
squared_subA = A[1:3, 1:3]
print(squared_subA)
np.linalg.inv(squared_subA)
[[0.44123925 0.19849497] [0.00982615 0.8793322 ]]
array([[ 2.27779454, -0.51417516], [-0.02545335, 1.14297232]])
4.4 - Introduction to Pandas: Python Data Analysis Library¶
Pandas is an open source library providing high-performance, easy-to-use data structures and data analysis tools for Python.
Pandas tutorial Grenoble Python Working Session Pandas for SQL Users Pandas Introduction Training HPC Python@UGA