[ACTF1] - Activation functions¶
Some activation functions, with their derivatives.Objectives :¶
- View the main activation functions
Les fonctions d'activation dans Keras :
https://www.tensorflow.org/api_docs/python/tf/keras/activations
What we're going to do :¶
- Juste visualiser les principales fonctions d'activation
In [1]:
import numpy as np
import matplotlib
import matplotlib.pyplot as plt
import math
from math import erfc, sqrt, exp
from math import pi as PI
from math import e as E
import sys
import fidle
# Init Fidle environment
run_id, run_dir, datasets_dir = fidle.init('ACTF1')
FIDLE - Environment initialization
Version : 2.3.2 Run id : ACTF1 Run dir : ./run/ACTF1 Datasets dir : /lustre/fswork/projects/rech/mlh/uja62cb/fidle-project/datasets-fidle Start time : 22/12/24 21:42:22 Hostname : r3i5n3 (Linux) Tensorflow log level : Info + Warning + Error (=0) Update keras cache : False Update torch cache : False Save figs : ./run/ACTF1/figs (True) numpy : 2.1.2 sklearn : 1.5.2 yaml : 6.0.2 matplotlib : 3.9.2 pandas : 2.2.3
In [2]:
SELU_A = -sqrt(2/PI)/(erfc(1/sqrt(2))*exp(1/2)-1)
SELU_L = (1-erfc(1/sqrt(2))*sqrt(E))*sqrt(2*PI) / (2*erfc(sqrt(2))*E*E+PI*erfc(1/sqrt(2))**2*E-2*(2+PI)*erfc(1/sqrt(2))*sqrt(E)+PI+2)**0.5
def heaviside(z):
return np.where(z<0,0,1)
def sign(z):
return np.where(z<0,-1,1)
# return np.sign(z)
def sigmoid(z):
return 1 / (1 + np.exp(-z))
def tanh(z):
return np.tanh(z)
def relu(z):
return np.maximum(0, z)
def leaky_relu(z,a=0.05):
return np.maximum(a*z, z)
def elu(z,a=1):
#y=z.copy()
y=a*(np.exp(z)-1)
y[z>0]=z[z>0]
return y
def selu(z):
return SELU_L*elu(z,a=SELU_A)
def derivative(f, z, eps=0.000001):
return (f(z + eps) - f(z - eps))/(2 * eps)
In [3]:
pw=5
ph=5
z = np.linspace(-5, 5, 200)
# ------ Heaviside
#
fig, ax = plt.subplots(1, 1)
fig.set_size_inches(pw,ph)
ax.set_xlim(-5, 5)
ax.set_ylim(-2, 2)
ax.axhline(y=0, linewidth=1, linestyle='--', color='lightgray')
ax.axvline(x=0, linewidth=1, linestyle='--', color='lightgray')
ax.plot(0, 0, "rx", markersize=10)
ax.plot(z, heaviside(z), linestyle='-', label="Heaviside")
ax.plot(z, derivative(heaviside, z), linewidth=3, alpha=0.6, label="dHeaviside/dx")
# ax.plot(z, sign(z), label="Heaviside")
ax.set_title("Heaviside")
fidle.scrawler.save_fig('Heaviside')
plt.show()
# ----- Logit/Sigmoid
#
fig, ax = plt.subplots(1, 1)
fig.set_size_inches(pw,ph)
ax.set_xlim(-5, 5)
ax.set_ylim(-2, 2)
ax.axhline(y=0, linewidth=1, linestyle='--', color='lightgray')
ax.axvline(x=0, linewidth=1, linestyle='--', color='lightgray')
ax.plot(z, sigmoid(z), label="Sigmoid")
ax.plot(z, derivative(sigmoid, z), linewidth=3, alpha=0.6, label="dSigmoid/dx")
ax.set_title("Logit")
fidle.scrawler.save_fig('Logit')
plt.show()
# ----- Tanh
#
fig, ax = plt.subplots(1, 1)
fig.set_size_inches(pw,ph)
ax.set_xlim(-5, 5)
ax.set_ylim(-2, 2)
ax.axhline(y=0, linewidth=1, linestyle='--', color='lightgray')
ax.axvline(x=0, linewidth=1, linestyle='--', color='lightgray')
ax.plot(z, tanh(z), label="Tanh")
ax.plot(z, derivative(tanh, z), linewidth=3, alpha=0.6, label="dTanh/dx")
ax.set_title("Tanh")
fidle.scrawler.save_fig('Tanh')
plt.show()
# ----- Relu
#
fig, ax = plt.subplots(1, 1)
fig.set_size_inches(pw,ph)
ax.set_xlim(-5, 5)
ax.set_ylim(-2, 2)
ax.axhline(y=0, linewidth=1, linestyle='--', color='lightgray')
ax.axvline(x=0, linewidth=1, linestyle='--', color='lightgray')
ax.plot(z, relu(z), label="ReLU")
ax.plot(z, derivative(relu, z), linewidth=3, alpha=0.6, label="dReLU/dx")
ax.set_title("ReLU")
fidle.scrawler.save_fig('ReLU')
plt.show()
# ----- Leaky Relu
#
fig, ax = plt.subplots(1, 1)
fig.set_size_inches(pw,ph)
ax.set_xlim(-5, 5)
ax.set_ylim(-2, 2)
ax.axhline(y=0, linewidth=1, linestyle='--', color='lightgray')
ax.axvline(x=0, linewidth=1, linestyle='--', color='lightgray')
ax.plot(z, leaky_relu(z), label="Leaky ReLU")
ax.plot(z, derivative( leaky_relu, z), linewidth=3, alpha=0.6, label="dLeakyReLU/dx")
ax.set_title("Leaky ReLU (α=0.05)")
fidle.scrawler.save_fig('LeakyReLU')
plt.show()
# ----- Elu
#
fig, ax = plt.subplots(1, 1)
fig.set_size_inches(pw,ph)
ax.set_xlim(-5, 5)
ax.set_ylim(-2, 2)
ax.axhline(y=0, linewidth=1, linestyle='--', color='lightgray')
ax.axvline(x=0, linewidth=1, linestyle='--', color='lightgray')
ax.plot(z, elu(z), label="ReLU")
ax.plot(z, derivative( elu, z), linewidth=3, alpha=0.6, label="dExpReLU/dx")
ax.set_title("ELU (α=1)")
fidle.scrawler.save_fig('ELU')
plt.show()
# ----- Selu
#
fig, ax = plt.subplots(1, 1)
fig.set_size_inches(pw,ph)
ax.set_xlim(-5, 5)
ax.set_ylim(-2, 2)
ax.axhline(y=0, linewidth=1, linestyle='--', color='lightgray')
ax.axvline(x=0, linewidth=1, linestyle='--', color='lightgray')
ax.plot(z, selu(z), label="SeLU")
ax.plot(z, derivative( selu, z), linewidth=3, alpha=0.6, label="dSeLU/dx")
ax.set_title("ELU (SELU)")
fidle.scrawler.save_fig('SeLU')
plt.show()
Saved: ./run/ACTF1/figs/Heaviside
Saved: ./run/ACTF1/figs/Logit
Saved: ./run/ACTF1/figs/Tanh
Saved: ./run/ACTF1/figs/ReLU
Saved: ./run/ACTF1/figs/LeakyReLU
Saved: ./run/ACTF1/figs/ELU
Saved: ./run/ACTF1/figs/SeLU