No description has been provided for this image

[K3AE4] - Denoiser and classifier model¶

Episode 4 : Construction of a denoiser and classifier model

Objectives :¶

  • Building a multiple output model, able to denoise and classify
  • Understanding a more advanced programming model

The calculation needs being important, it is preferable to use a very simple dataset such as MNIST.
The use of a GPU is often indispensable.

What we're going to do :¶

  • Defining a multiple output model using Keras procedural programing model
  • Build the model
  • Train it
  • Follow the learning process

Data Terminology :¶

  • clean_train, clean_test for noiseless images
  • noisy_train, noisy_test for noisy images
  • class_train, class_test for the classes to which the images belong
  • denoised_test for denoised images at the output of the model
  • classcat_test for class prediction in model output (is a softmax)
  • classid_test class prediction (ie: argmax of classcat_test)

Step 1 - Init python stuff¶

1.1 - Init¶

InĀ [1]:
import os
os.environ['KERAS_BACKEND'] = 'torch'

import keras

import numpy as np
from skimage import io
import random

from modules.AE4_builder    import AE4_builder
from modules.MNIST          import MNIST
from modules.ImagesCallback import ImagesCallback

import fidle

# Init Fidle environment
run_id, run_dir, datasets_dir = fidle.init('K3AE4')


FIDLE - Environment initialization

Version              : 2.3.2
Run id               : K3AE4
Run dir              : ./run/K3AE4
Datasets dir         : /lustre/fswork/projects/rech/mlh/uja62cb/fidle-project/datasets-fidle
Start time           : 22/12/24 21:26:45
Hostname             : r3i6n0 (Linux)
Tensorflow log level : Info + Warning + Error  (=0)
Update keras cache   : False
Update torch cache   : False
Save figs            : ./run/K3AE4/figs (True)
keras                : 3.7.0
numpy                : 2.1.2
sklearn              : 1.5.2
yaml                 : 6.0.2
skimage              : 0.24.0
matplotlib           : 3.9.2
pandas               : 2.2.3
torch                : 2.5.0

1.2 - Parameters¶

prepared_dataset : Filename of the prepared dataset (Need 400 Mo, but can be in ./data)
dataset_seed : Random seed for shuffling dataset. 'None' mean using /dev/urandom
scale : % of the dataset to use (1. for 100%)
latent_dim : Dimension of the latent space
train_prop : Percentage for train (the rest being for the test) batch_size : Batch size
epochs : Nb of epochs for training
fit_verbosity is the verbosity during training : 0 = silent, 1 = progress bar, 2 = one line per epoch

scale=0.1, epochs=20 => 2' on a laptop

InĀ [2]:
prepared_dataset = './data/mnist-noisy.h5'
dataset_seed     = None

scale            = .1

train_prop       = .8
batch_size       = 128
epochs           = 10
fit_verbosity    = 1

Override parameters (batch mode) - Just forget this cell

InĀ [3]:
fidle.override('prepared_dataset', 'dataset_seed', 'scale')
fidle.override('train_prop', 'batch_size', 'epochs', 'fit_verbosity')
** Overrided parameters : **
scale                : 1
** Overrided parameters : **
epochs               : 20
fit_verbosity        : 2

Step 2 - Retrieve dataset¶

With our MNIST class, in one call, we can reload, rescale, shuffle and split our previously saved dataset :-)

InĀ [4]:
clean_train,clean_test, noisy_train,noisy_test, class_train,class_test = MNIST.reload_prepared_dataset(
                                                                                    scale      = scale, 
                                                                                    train_prop = train_prop,
                                                                                    seed       = dataset_seed,
                                                                                    shuffle    = True,
                                                                                    filename   = prepared_dataset )
Loaded.
rescaled (1).
Seeded (None)
Shuffled.
splited (0.8).
clean_train shape is :  (56000, 28, 28, 1)
clean_test  shape is :  (14000, 28, 28, 1)
noisy_train shape is :  (56000, 28, 28, 1)
noisy_test  shape is :  (14000, 28, 28, 1)
class_train shape is :  (56000,)
class_test  shape is :  (14000,)
Blake2b digest is    :  b8d58e240863aa03b731

Step 3 - Build models¶

InĀ [5]:
builder = AE4_builder( ae={ 'latent_dim':10 }, cnn = { 'lc1':8, 'lc2':16, 'ld':100 } )

model = builder.create_model()
InĀ [6]:
model.compile(optimizer='rmsprop', 
              loss={'ae':'binary_crossentropy', 'classifier':'sparse_categorical_crossentropy'},
              loss_weights={'ae':1., 'classifier':1.},
              metrics={'classifier':'accuracy'} )
InĀ [7]:
# keras.utils.plot_model(model, "multi_input_and_output_model.png", show_shapes=True)

Step 4 - Train¶

20' on a CPU
1'12 on a GPU (V100, IDRIS)

InĀ [8]:
# ---- Callback : Images
#
fidle.utils.mkdir( run_dir + '/images')
filename = run_dir + '/images/image-{epoch:03d}-{i:02d}.jpg'

encoder = model.get_layer('ae').get_layer('encoder')
decoder = model.get_layer('ae').get_layer('decoder')

callback_images = ImagesCallback(filename, x=clean_test[:5], encoder=encoder,decoder=decoder)
InĀ [9]:
chrono = fidle.Chrono()
chrono.start()

history = model.fit(noisy_train, [clean_train, class_train],
                 batch_size      = batch_size,
                 epochs          = epochs,
                 verbose         = fit_verbosity,
                 validation_data = (noisy_test, [clean_test, class_test]),
                 callbacks       = [ callback_images ]  )

chrono.show()
Epoch 1/20
/lustre/fswork/projects/rech/mlh/uja62cb/local/fidle-k3/lib/python3.12/site-packages/keras/src/backend/common/backend_utils.py:91: UserWarning: You might experience inconsistencies across backends when calling conv transpose with kernel_size=3, stride=2, dilation_rate=1, padding=same, output_padding=1.
  warnings.warn(
1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 10ms/step

1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 11ms/step
1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 4ms/step

1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 5ms/step
438/438 - 9s - 21ms/step - ae_loss: 0.2794 - classifier_accuracy: 0.4499 - classifier_loss: 1.5767 - loss: 1.8562 - val_ae_loss: 0.2263 - val_classifier_accuracy: 0.7361 - val_classifier_loss: 0.8732 - val_loss: 1.0995
Epoch 2/20
1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 3ms/step

1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 4ms/step
1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 3ms/step

1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 3ms/step
438/438 - 9s - 20ms/step - ae_loss: 0.2001 - classifier_accuracy: 0.6701 - classifier_loss: 0.9882 - loss: 1.1884 - val_ae_loss: 0.1843 - val_classifier_accuracy: 0.7973 - val_classifier_loss: 0.6603 - val_loss: 0.8446
Epoch 3/20
1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 3ms/step

1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 4ms/step
1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 3ms/step

1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 3ms/step
438/438 - 9s - 20ms/step - ae_loss: 0.1784 - classifier_accuracy: 0.7299 - classifier_loss: 0.8202 - loss: 0.9986 - val_ae_loss: 0.1707 - val_classifier_accuracy: 0.8274 - val_classifier_loss: 0.5536 - val_loss: 0.7243
Epoch 4/20
1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 3ms/step

1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 4ms/step
1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 3ms/step

1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 4ms/step
438/438 - 9s - 20ms/step - ae_loss: 0.1682 - classifier_accuracy: 0.7608 - classifier_loss: 0.7299 - loss: 0.8981 - val_ae_loss: 0.1644 - val_classifier_accuracy: 0.8385 - val_classifier_loss: 0.5071 - val_loss: 0.6715
Epoch 5/20
1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 4ms/step

1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 4ms/step
1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 3ms/step

1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 4ms/step
438/438 - 9s - 20ms/step - ae_loss: 0.1631 - classifier_accuracy: 0.7785 - classifier_loss: 0.6772 - loss: 0.8403 - val_ae_loss: 0.1662 - val_classifier_accuracy: 0.8459 - val_classifier_loss: 0.4809 - val_loss: 0.6471
Epoch 6/20
1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 3ms/step

1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 4ms/step
1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 3ms/step

1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 4ms/step
438/438 - 9s - 20ms/step - ae_loss: 0.1599 - classifier_accuracy: 0.7856 - classifier_loss: 0.6585 - loss: 0.8184 - val_ae_loss: 0.1612 - val_classifier_accuracy: 0.8522 - val_classifier_loss: 0.4625 - val_loss: 0.6237
Epoch 7/20
1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 3ms/step

1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 4ms/step
1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 3ms/step

1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 4ms/step
438/438 - 9s - 20ms/step - ae_loss: 0.1575 - classifier_accuracy: 0.7960 - classifier_loss: 0.6291 - loss: 0.7867 - val_ae_loss: 0.1607 - val_classifier_accuracy: 0.8576 - val_classifier_loss: 0.4520 - val_loss: 0.6128
Epoch 8/20
1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 3ms/step

1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 4ms/step
1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 3ms/step

1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 4ms/step
438/438 - 9s - 20ms/step - ae_loss: 0.1557 - classifier_accuracy: 0.8006 - classifier_loss: 0.6088 - loss: 0.7645 - val_ae_loss: 0.1582 - val_classifier_accuracy: 0.8601 - val_classifier_loss: 0.4376 - val_loss: 0.5958
Epoch 9/20
1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 3ms/step

1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 4ms/step
1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 3ms/step

1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 3ms/step
438/438 - 9s - 20ms/step - ae_loss: 0.1542 - classifier_accuracy: 0.8061 - classifier_loss: 0.6018 - loss: 0.7560 - val_ae_loss: 0.1555 - val_classifier_accuracy: 0.8619 - val_classifier_loss: 0.4348 - val_loss: 0.5903
Epoch 10/20
1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 3ms/step

1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 4ms/step
1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 3ms/step

1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 4ms/step
438/438 - 9s - 20ms/step - ae_loss: 0.1530 - classifier_accuracy: 0.8071 - classifier_loss: 0.5935 - loss: 0.7465 - val_ae_loss: 0.1553 - val_classifier_accuracy: 0.8644 - val_classifier_loss: 0.4225 - val_loss: 0.5778
Epoch 11/20
1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 3ms/step

1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 4ms/step
1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 3ms/step

1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 4ms/step
438/438 - 9s - 20ms/step - ae_loss: 0.1520 - classifier_accuracy: 0.8091 - classifier_loss: 0.5860 - loss: 0.7380 - val_ae_loss: 0.1529 - val_classifier_accuracy: 0.8622 - val_classifier_loss: 0.4276 - val_loss: 0.5805
Epoch 12/20
1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 3ms/step

1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 4ms/step
1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 3ms/step

1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 3ms/step
438/438 - 9s - 20ms/step - ae_loss: 0.1510 - classifier_accuracy: 0.8115 - classifier_loss: 0.5833 - loss: 0.7343 - val_ae_loss: 0.1527 - val_classifier_accuracy: 0.8604 - val_classifier_loss: 0.4303 - val_loss: 0.5830
Epoch 13/20
1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 3ms/step

1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 4ms/step
1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 3ms/step

1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 4ms/step
438/438 - 9s - 20ms/step - ae_loss: 0.1502 - classifier_accuracy: 0.8120 - classifier_loss: 0.5784 - loss: 0.7286 - val_ae_loss: 0.1539 - val_classifier_accuracy: 0.8658 - val_classifier_loss: 0.4162 - val_loss: 0.5700
Epoch 14/20
1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 4ms/step

1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 4ms/step
1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 3ms/step

1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 3ms/step
438/438 - 9s - 20ms/step - ae_loss: 0.1494 - classifier_accuracy: 0.8155 - classifier_loss: 0.5710 - loss: 0.7205 - val_ae_loss: 0.1509 - val_classifier_accuracy: 0.8594 - val_classifier_loss: 0.4334 - val_loss: 0.5842
Epoch 15/20
1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 3ms/step

1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 4ms/step
1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 3ms/step

1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 4ms/step
438/438 - 9s - 20ms/step - ae_loss: 0.1487 - classifier_accuracy: 0.8169 - classifier_loss: 0.5647 - loss: 0.7134 - val_ae_loss: 0.1521 - val_classifier_accuracy: 0.8685 - val_classifier_loss: 0.4118 - val_loss: 0.5640
Epoch 16/20
1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 3ms/step

1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 4ms/step
1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 3ms/step

1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 4ms/step
438/438 - 9s - 20ms/step - ae_loss: 0.1482 - classifier_accuracy: 0.8186 - classifier_loss: 0.5645 - loss: 0.7128 - val_ae_loss: 0.1503 - val_classifier_accuracy: 0.8695 - val_classifier_loss: 0.4094 - val_loss: 0.5598
Epoch 17/20
1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 3ms/step

1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 4ms/step
1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 3ms/step

1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 4ms/step
438/438 - 9s - 20ms/step - ae_loss: 0.1475 - classifier_accuracy: 0.8185 - classifier_loss: 0.5602 - loss: 0.7077 - val_ae_loss: 0.1502 - val_classifier_accuracy: 0.8694 - val_classifier_loss: 0.4100 - val_loss: 0.5601
Epoch 18/20
1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 3ms/step

1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 4ms/step
1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 3ms/step

1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 4ms/step
438/438 - 9s - 20ms/step - ae_loss: 0.1470 - classifier_accuracy: 0.8182 - classifier_loss: 0.5618 - loss: 0.7088 - val_ae_loss: 0.1499 - val_classifier_accuracy: 0.8641 - val_classifier_loss: 0.4320 - val_loss: 0.5819
Epoch 19/20
1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 3ms/step

1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 4ms/step
1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 3ms/step

1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 4ms/step
438/438 - 9s - 20ms/step - ae_loss: 0.1466 - classifier_accuracy: 0.8158 - classifier_loss: 0.5590 - loss: 0.7056 - val_ae_loss: 0.1503 - val_classifier_accuracy: 0.8679 - val_classifier_loss: 0.4138 - val_loss: 0.5641
Epoch 20/20
1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 3ms/step

1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 4ms/step
1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 3ms/step

1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 4ms/step
438/438 - 9s - 20ms/step - ae_loss: 0.1460 - classifier_accuracy: 0.8207 - classifier_loss: 0.5565 - loss: 0.7025 - val_ae_loss: 0.1506 - val_classifier_accuracy: 0.8665 - val_classifier_loss: 0.4117 - val_loss: 0.5624
Duration :  173.08 seconds

Save model weights

InĀ [10]:
os.makedirs(f'{run_dir}/models', exist_ok=True)

model.save_weights(f'{run_dir}/models/model.weights.h5')

Step 5 - History¶

InĀ [11]:
fidle.scrawler.history(history,  plot={'Loss':['loss', 'val_loss'],
                                 'Accuracy':['classifier_accuracy','val_classifier_accuracy']}, save_as='01-history')
Saved: ./run/K3AE4/figs/01-history_0
No description has been provided for this image
Saved: ./run/K3AE4/figs/01-history_1
No description has been provided for this image

Step 6 - Denoising progress¶

InĀ [12]:
imgs=[]
for epoch in range(0,epochs,4):
    for i in range(5):
        filename = run_dir + '/images/image-{epoch:03d}-{i:02d}.jpg'.format(epoch=epoch, i=i)
        img      = io.imread(filename)
        imgs.append(img)      

fidle.utils.subtitle('Real images (clean_test) :')
fidle.scrawler.images(clean_test[:5], None, indices='all', columns=5, x_size=2,y_size=2, interpolation=None, save_as='02-original-real')

fidle.utils.subtitle('Noisy images (noisy_test) :')
fidle.scrawler.images(noisy_test[:5], None, indices='all', columns=5, x_size=2,y_size=2, interpolation=None, save_as='03-original-noisy')

fidle.utils.subtitle('Evolution during the training period (denoised_test) :')
fidle.scrawler.images(imgs, None, indices='all', columns=5, x_size=2,y_size=2, interpolation=None, y_padding=0.1, save_as='04-learning')

fidle.utils.subtitle('Noisy images (noisy_test) :')
fidle.scrawler.images(noisy_test[:5], None, indices='all', columns=5, x_size=2,y_size=2, interpolation=None, save_as=None)

fidle.utils.subtitle('Real images (clean_test) :')
fidle.scrawler.images(clean_test[:5], None, indices='all', columns=5, x_size=2,y_size=2, interpolation=None, save_as=None)


Real images (clean_test) :

Saved: ./run/K3AE4/figs/02-original-real
No description has been provided for this image


Noisy images (noisy_test) :

Saved: ./run/K3AE4/figs/03-original-noisy
No description has been provided for this image


Evolution during the training period (denoised_test) :

Saved: ./run/K3AE4/figs/04-learning
No description has been provided for this image


Noisy images (noisy_test) :

No description has been provided for this image


Real images (clean_test) :

No description has been provided for this image

Step 7 - Evaluation¶

Note : We will use the following data:
clean_train, clean_test for noiseless images
noisy_train, noisy_test for noisy images
class_train, class_test for the classes to which the images belong
denoised_test for denoised images at the output of the model
classcat_test for class prediction in model output (is a softmax)
classid_test class prediction (ie: argmax of classcat_test)




7.1 - Reload our model (weights)¶

InĀ [13]:
builder = AE4_builder( ae={ 'latent_dim':10 }, cnn = { 'lc1':8, 'lc2':16, 'ld':100 } )

model = builder.create_model()

model.load_weights(f'{run_dir}/models/model.weights.h5')

7.2 - Let's make a prediction¶

Note that our model will returns 2 outputs : denoised images from output 1 and class prediction from output 2

InĀ [14]:
outputs = model.predict(noisy_test, verbose=0)

denoised = outputs['ae']
classcat = outputs['classifier']

print('Denoised images   (denoised_test) shape : ', denoised.shape)
print('Predicted classes (classcat_test) shape : ', classcat.shape)
Denoised images   (denoised_test) shape :  (14000, 28, 28, 1)
Predicted classes (classcat_test) shape :  (14000, 10)

7.3 - Denoised images¶

InĀ [15]:
i=random.randint(0,len(denoised)-8)
j=i+8

fidle.utils.subtitle('Noisy test images (input):')
fidle.scrawler.images(noisy_test[i:j], None, indices='all', columns=8, x_size=2,y_size=2, interpolation=None, save_as='05-test-noisy')

fidle.utils.subtitle('Denoised images (output):')
fidle.scrawler.images(denoised[i:j], None, indices='all', columns=8, x_size=2,y_size=2, interpolation=None, save_as='06-test-predict')

fidle.utils.subtitle('Real test images :')
fidle.scrawler.images(clean_test[i:j], None, indices='all', columns=8, x_size=2,y_size=2, interpolation=None, save_as='07-test-real')


Noisy test images (input):

Saved: ./run/K3AE4/figs/05-test-noisy
No description has been provided for this image


Denoised images (output):

Saved: ./run/K3AE4/figs/06-test-predict
No description has been provided for this image


Real test images :

Saved: ./run/K3AE4/figs/07-test-real
No description has been provided for this image

7.4 - Class prediction¶

Note: The evaluation requires the noisy images as input (noisy_test) and the 2 expected outputs:

  • the images without noise (clean_test)
  • the classes (class_test)
InĀ [16]:
# We need to (re)compile our resurrected model (to specify loss and metrics)
#
model.compile(optimizer='rmsprop', 
              loss={'ae':'binary_crossentropy', 'classifier':'sparse_categorical_crossentropy'},
              loss_weights={'ae':1., 'classifier':1.},
              metrics={'classifier':'accuracy'} )


# Get an evaluation
#
score = model.evaluate(noisy_test, [clean_test, class_test], verbose=0)

# And show results
#
fidle.utils.subtitle("Accuracy :")
print(f'Classification accuracy : {score[1]:4.4f}')

fidle.utils.subtitle("Few examples :")
classid_test  = np.argmax(classcat, axis=-1)
fidle.scrawler.images(noisy_test, class_test, range(0,200), columns=12, x_size=1, y_size=1, y_pred=classid_test, save_as='04-predictions')


Accuracy :

Classification accuracy : 0.1506


Few examples :

Saved: ./run/K3AE4/figs/04-predictions
No description has been provided for this image
InĀ [17]:
fidle.end()

End time : 22/12/24 21:30:11
Duration : 00:03:27 533ms
This notebook ends here :-)
https://fidle.cnrs.fr



No description has been provided for this image