Connexion
Souvenir
Inscription
Questions
Sans réponse
Catégories
Utilisateurs
Poser une question
Fidle
Poser une question
Peut on utiliser les transformers sur une matrice de nombres réelles pour prédire des classes d'appartenance?
0
votes
posée
par
anonyme
19 janvier 2023
dans
Séquence 8
Votre réponse
Votre nom à afficher (en option)
Envoyez-moi un e-mail à cette adresse si ma réponse est sélectionnée ou commentée
Envoyez-moi un e-mail si ma réponse est sélectionnée ou commentée
Vie privée : votre adresse de messagerie ne sera utilisée que pour l'envoi de ces notifications .
Vérification anti-spam
Pour éviter cette vérification à l'avenir,
Connectez vous
ou
inscrivez vous
.
1
Réponse
0
votes
répondu
par
hunoutl[IDRIS]
Vétéran du GPU 🐋
(
68.8k
points)
19 janvier 2023
sélectionné
par
hunoutl[IDRIS]
19 janvier 2023
Meilleure réponse
Il faut pouvoir transformer cette matrice en séquence mais cela doit être possible
commentée
par
AD
19 janvier 2023
Si les transformers ingèrent des séquences, sont-ils inspirés des RNN plutôt que des CNN ?
commentée
par
hunoutl[IDRIS]
Vétéran du GPU 🐋
(
68.8k
points)
19 janvier 2023
Chronologiquement c'est la suite des RNN (provient du monde du NLP) mais maintenant ce n'est plus une suite mais bien une architecture nouvelle à part entière
commentée
par
AD
19 janvier 2023
Compris, merci.
Votre commentaire sur cette réponse
Votre nom à afficher (en option)
Envoyez-moi un e-mail à cette adresse si un commentaire est ajouté après le mien
Envoyez-moi un e-mail si un commentaire est ajouté après le mien
Vie privée : votre adresse de messagerie ne sera utilisée que pour l'envoi de ces notifications .
Vérification anti-spam
Pour éviter cette vérification à l'avenir,
Connectez vous
ou
inscrivez vous
.
Catégories
Toutes les catégories
Attestations
(14)
Installation FIDLE
(19)
01 - Bases, concepts et histoire
(57)
02 - L’enfer des données, des modèles et des représentations...
(21)
03 - Démo et Illustration
(8)
04 - AI, droit, société et éthique
(5)
05 - Mathématiques, gradients everywhere !!!
(6)
06 - Méthodologie des modèles/apprentissage + fine-tuning + TP
(10)
07 - Réseaux convolutifs CNN
(9)
08 - RNN et Embedding
(10)
09 - Transformers
(13)
10 - Graph Neural Network (GNN)
(10)
11 - Autoencodeur (AE)
(3)
12 - Variational Autoencoder (VAE)
(2)
13 - Generative Adversarial Networks (GAN)
(5)
14 - Diffusion Model (DM)
(3)
15 - Deep Reinforcement Learning (DRL)
(2)
16 - Physics Informed Neural Networks (PINNS)
(4)
17 - Optimisation de l'apprentissage
(2)
18 - Passer à la vitesse supérieure : l’accélération matérielle
(0)
19 - Multi-modalité
(1)
2nd JDLS
(0)
Archives 2022/2023
(77)
Installation Fidle
(61)
Attestation
(13)
Présentation de saison
(11)
Séquence 1
(29)
Séquence 2
(81)
Séquence 3
(52)
Séquence 4
(27)
Séquence 5
(16)
Séquence 6
(20)
Séquence 7
(19)
Séquence 8
(35)
Séquence 8 : TP
(8)
Séquence 9
(12)
Séquence 10
(11)
Séquence 11
(19)
Séquence 13
(9)
Séquence 14
(7)
Séquence 15
(7)
Séquence 16
(11)
Séquence 17
(5)
Séquence 18
(6)
Séquence 19
(5)
JDLS 2023
(3)
Bienvenue sur Fidle Q&A, où vous pouvez poser des questions et recevoir des réponses d'autres membres de la communauté.
...