Connexion
Souvenir
Inscription
Questions
Sans réponse
Catégories
Utilisateurs
Poser une question
Fidle
Poser une question
half-precision for PINNs
0
votes
posée
par
anonyme
13 avril 2023
dans
Séquence 19
recatégorisées
par
hunoutl[IDRIS]
21 avril 2023
Hi, I was wondering if using half/single precision could be an issue in calculations for physically informed networks. It was mentioned just now that it is not an issue in most applications. Is it an issue in this type of applications in particular?
pinns
amp
Votre réponse
Votre nom à afficher (en option)
Envoyez-moi un e-mail à cette adresse si ma réponse est sélectionnée ou commentée
Envoyez-moi un e-mail si ma réponse est sélectionnée ou commentée
Vie privée : votre adresse de messagerie ne sera utilisée que pour l'envoi de ces notifications .
Vérification anti-spam
Pour éviter cette vérification à l'avenir,
Connectez vous
ou
inscrivez vous
.
1
Réponse
0
votes
répondu
par
hunoutl[IDRIS]
Vétéran du GPU 🐋
(
68.8k
points)
13 avril 2023
It depends.
The physically informed part could be damage by the half-precision but this could be irrelevant since we use a NN that doesn't care.
In all case, we can fix which part of our PINNs is using half precision, so it's not an true issue.
commentée
par
hunoutl[IDRIS]
Vétéran du GPU 🐋
(
68.8k
points)
17 avril 2023
à déplacer et poser durant la séquence sur les pinns
Votre commentaire sur cette réponse
Votre nom à afficher (en option)
Envoyez-moi un e-mail à cette adresse si un commentaire est ajouté après le mien
Envoyez-moi un e-mail si un commentaire est ajouté après le mien
Vie privée : votre adresse de messagerie ne sera utilisée que pour l'envoi de ces notifications .
Vérification anti-spam
Pour éviter cette vérification à l'avenir,
Connectez vous
ou
inscrivez vous
.
Catégories
Toutes les catégories
Attestations
(14)
Installation FIDLE
(19)
01 - Bases, concepts et histoire
(57)
02 - L’enfer des données, des modèles et des représentations...
(21)
03 - Démo et Illustration
(8)
04 - AI, droit, société et éthique
(5)
05 - Mathématiques, gradients everywhere !!!
(6)
06 - Méthodologie des modèles/apprentissage + fine-tuning + TP
(10)
07 - Réseaux convolutifs CNN
(9)
08 - RNN et Embedding
(10)
09 - Transformers
(13)
10 - Graph Neural Network (GNN)
(10)
11 - Autoencodeur (AE)
(3)
12 - Variational Autoencoder (VAE)
(2)
13 - Generative Adversarial Networks (GAN)
(5)
14 - Diffusion Model (DM)
(3)
15 - Deep Reinforcement Learning (DRL)
(2)
16 - Physics Informed Neural Networks (PINNS)
(4)
17 - Optimisation de l'apprentissage
(2)
18 - Passer à la vitesse supérieure : l’accélération matérielle
(0)
19 - Multi-modalité
(1)
2nd JDLS
(0)
Archives 2022/2023
(77)
Installation Fidle
(61)
Attestation
(13)
Présentation de saison
(11)
Séquence 1
(29)
Séquence 2
(81)
Séquence 3
(52)
Séquence 4
(27)
Séquence 5
(16)
Séquence 6
(20)
Séquence 7
(19)
Séquence 8
(35)
Séquence 9
(12)
Séquence 10
(11)
Séquence 11
(19)
Séquence 13
(9)
Séquence 14
(7)
Séquence 15
(7)
Séquence 16
(11)
Séquence 17
(5)
Séquence 18
(6)
Séquence 19
(5)
Séquence 19 : TP
(2)
JDLS 2023
(3)
Bienvenue sur Fidle Q&A, où vous pouvez poser des questions et recevoir des réponses d'autres membres de la communauté.
...