Connexion
Souvenir
Inscription
Questions
Sans réponse
Catégories
Utilisateurs
Poser une question
Fidle
Poser une question
How do I decide between supervised and unsupervised learning?
0
votes
posée
par
anonyme
16 novembre 2023
dans
01 - Bases, concepts et histoire
How do I decide between supervised and unsupervised learning?
Does it depend on what kind of data I have?
Deciding between a cat and a rabbit might be easy, but how do I apply AI for example on certain 1D curves in physics to identify materials?
Votre réponse
Votre nom à afficher (en option)
Envoyez-moi un e-mail à cette adresse si ma réponse est sélectionnée ou commentée
Envoyez-moi un e-mail si ma réponse est sélectionnée ou commentée
Vie privée : votre adresse de messagerie ne sera utilisée que pour l'envoi de ces notifications .
Vérification anti-spam
Pour éviter cette vérification à l'avenir,
Connectez vous
ou
inscrivez vous
.
1
Réponse
0
votes
répondu
par
Nathan[IDRIS]
Vétéran du GPU 🐋
(
48.7k
points)
16 novembre 2023
You don't decide, your data and the goal you're trying to achieve do for you
commentée
par
anonyme
16 novembre 2023
Ok, thank you. Will we later learn how to use deep learning on 1D curves of physics data?
commentée
par
Nathan[IDRIS]
Vétéran du GPU 🐋
(
48.7k
points)
16 novembre 2023
1D signals will be mentionned. And separately there will also be a session on Physics-Informed Neural Network.
Votre commentaire sur cette réponse
Votre nom à afficher (en option)
Envoyez-moi un e-mail à cette adresse si un commentaire est ajouté après le mien
Envoyez-moi un e-mail si un commentaire est ajouté après le mien
Vie privée : votre adresse de messagerie ne sera utilisée que pour l'envoi de ces notifications .
Vérification anti-spam
Pour éviter cette vérification à l'avenir,
Connectez vous
ou
inscrivez vous
.
Catégories
Toutes les catégories
Attestations
(14)
Installation FIDLE
(19)
01 - Bases, concepts et histoire
(57)
02 - L’enfer des données, des modèles et des représentations...
(21)
03 - Démo et Illustration
(8)
04 - AI, droit, société et éthique
(5)
05 - Mathématiques, gradients everywhere !!!
(6)
06 - Méthodologie des modèles/apprentissage + fine-tuning + TP
(10)
07 - Réseaux convolutifs CNN
(9)
08 - RNN et Embedding
(10)
09 - Transformers
(13)
10 - Graph Neural Network (GNN)
(10)
11 - Autoencodeur (AE)
(3)
12 - Variational Autoencoder (VAE)
(2)
13 - Generative Adversarial Networks (GAN)
(5)
14 - Diffusion Model (DM)
(3)
15 - Deep Reinforcement Learning (DRL)
(2)
16 - Physics Informed Neural Networks (PINNS)
(4)
17 - Optimisation de l'apprentissage
(2)
18 - Passer à la vitesse supérieure : l’accélération matérielle
(0)
19 - Multi-modalité
(1)
2nd JDLS
(0)
Archives 2022/2023
(77)
Bienvenue sur Fidle Q&A, où vous pouvez poser des questions et recevoir des réponses d'autres membres de la communauté.
...