Connexion
Souvenir
Inscription
Questions
Sans réponse
Catégories
Utilisateurs
Poser une question
Fidle
Poser une question
Pourquoi Keras plutôt que torch.nn ?
0
votes
posée
par
anonyme
07 mars
dans
10 - Graph Neural Network (GNN)
Bonjour,
Quels avantages y a-t-il à utiliser Keras avec pyTorch en backend plutôt que d'utiliser directement le module nn de pytorch qui permet lui aussi de créer des réseaux en assemblant les couches ?
keras
pytorch
Votre réponse
Votre nom à afficher (en option)
Envoyez-moi un e-mail à cette adresse si ma réponse est sélectionnée ou commentée
Envoyez-moi un e-mail si ma réponse est sélectionnée ou commentée
Vie privée : votre adresse de messagerie ne sera utilisée que pour l'envoi de ces notifications .
Vérification anti-spam
Pour éviter cette vérification à l'avenir,
Connectez vous
ou
inscrivez vous
.
1
Réponse
0
votes
répondu
par
TVery[IDRIS]
Vétéran du GPU 🐋
(
8.6k
points)
07 mars
edité
par
TVery[IDRIS]
07 mars
Meilleure réponse
C'est principalement une question d'habitudes.
En l'occurence torch.nn est beaucoup plus bas niveau que keras.
Keras (ou pytorch lightning) permet de condenser les codes en cachant un peu de la complexité d'implémentation. Mais on perd un peu en liberté d'implémentation.
Votre commentaire sur cette réponse
Votre nom à afficher (en option)
Envoyez-moi un e-mail à cette adresse si un commentaire est ajouté après le mien
Envoyez-moi un e-mail si un commentaire est ajouté après le mien
Vie privée : votre adresse de messagerie ne sera utilisée que pour l'envoi de ces notifications .
Vérification anti-spam
Pour éviter cette vérification à l'avenir,
Connectez vous
ou
inscrivez vous
.
Catégories
Toutes les catégories
Attestations
(14)
Installation FIDLE
(19)
01 - Bases, concepts et histoire
(57)
02 - L’enfer des données, des modèles et des représentations...
(21)
03 - Démo et Illustration
(8)
04 - AI, droit, société et éthique
(5)
05 - Mathématiques, gradients everywhere !!!
(6)
06 - Méthodologie des modèles/apprentissage + fine-tuning + TP
(10)
07 - Réseaux convolutifs CNN
(9)
08 - RNN et Embedding
(10)
09 - Transformers
(13)
10 - Graph Neural Network (GNN)
(10)
11 - Autoencodeur (AE)
(3)
12 - Variational Autoencoder (VAE)
(2)
13 - Generative Adversarial Networks (GAN)
(5)
14 - Diffusion Model (DM)
(3)
15 - Deep Reinforcement Learning (DRL)
(2)
16 - Physics Informed Neural Networks (PINNS)
(4)
17 - Optimisation de l'apprentissage
(2)
18 - Passer à la vitesse supérieure : l’accélération matérielle
(0)
19 - Multi-modalité
(1)
2nd JDLS
(0)
Archives 2022/2023
(77)
Bienvenue sur Fidle Q&A, où vous pouvez poser des questions et recevoir des réponses d'autres membres de la communauté.
...