Connexion
Souvenir
Inscription
Questions
Sans réponse
Catégories
Utilisateurs
Poser une question
Fidle
Poser une question
Comment calculer/choisir le nombre optimal de convolutions ?
0
votes
posée
par
AD
24 novembre 2022
dans
Séquence 2
à appliquer en fonction de ses données et capacités de calcul ?
Dans l'exemple des MNIST, 2 convolutions sont appliquées. Pourquoi pas plus ou moins ?
Votre réponse
Votre nom à afficher (en option)
Envoyez-moi un e-mail à cette adresse si ma réponse est sélectionnée ou commentée
Envoyez-moi un e-mail si ma réponse est sélectionnée ou commentée
Vie privée : votre adresse de messagerie ne sera utilisée que pour l'envoi de ces notifications .
Vérification anti-spam
Pour éviter cette vérification à l'avenir,
Connectez vous
ou
inscrivez vous
.
2
Réponses
0
votes
répondu
par
hunoutl[IDRIS]
Vétéran du GPU 🐋
(
68.8k
points)
24 novembre 2022
Meilleure réponse
Vous avez répondu à la question !
Je rajouterai aussi en fonction du déroulement de l'apprentissage ainsi que des features que l'on souhaite être capable d'extraire. Dans tous les cas c'est de l'IA donc on y va par l'instinct et l'expérience
Votre commentaire sur cette réponse
Votre nom à afficher (en option)
Envoyez-moi un e-mail à cette adresse si un commentaire est ajouté après le mien
Envoyez-moi un e-mail si un commentaire est ajouté après le mien
Vie privée : votre adresse de messagerie ne sera utilisée que pour l'envoi de ces notifications .
Vérification anti-spam
Pour éviter cette vérification à l'avenir,
Connectez vous
ou
inscrivez vous
.
+1
vote
répondu
par
Maxime[IDRIS]
(
5.6k
points)
24 novembre 2022
Plus de couche = modèle plus complexe
Ensuite c'est l'expérience qui te donne une bonne idée du nombre de couches nécessaires, mais rien de mieux que de tester empiriquement.
commentée
par
AD
24 novembre 2022
C'est empirique, d'accord! Etonnant et nouveau pour moi, mais très intéressant.
Merci pour la réponse.
Votre commentaire sur cette réponse
Votre nom à afficher (en option)
Envoyez-moi un e-mail à cette adresse si un commentaire est ajouté après le mien
Envoyez-moi un e-mail si un commentaire est ajouté après le mien
Vie privée : votre adresse de messagerie ne sera utilisée que pour l'envoi de ces notifications .
Vérification anti-spam
Pour éviter cette vérification à l'avenir,
Connectez vous
ou
inscrivez vous
.
Catégories
Toutes les catégories
Attestations
(14)
Installation FIDLE
(19)
01 - Bases, concepts et histoire
(57)
02 - L’enfer des données, des modèles et des représentations...
(21)
03 - Démo et Illustration
(8)
04 - AI, droit, société et éthique
(5)
05 - Mathématiques, gradients everywhere !!!
(6)
06 - Méthodologie des modèles/apprentissage + fine-tuning + TP
(10)
07 - Réseaux convolutifs CNN
(9)
08 - RNN et Embedding
(10)
09 - Transformers
(13)
10 - Graph Neural Network (GNN)
(10)
11 - Autoencodeur (AE)
(3)
12 - Variational Autoencoder (VAE)
(2)
13 - Generative Adversarial Networks (GAN)
(5)
14 - Diffusion Model (DM)
(3)
15 - Deep Reinforcement Learning (DRL)
(2)
16 - Physics Informed Neural Networks (PINNS)
(4)
17 - Optimisation de l'apprentissage
(2)
18 - Passer à la vitesse supérieure : l’accélération matérielle
(0)
19 - Multi-modalité
(1)
2nd JDLS
(0)
Archives 2022/2023
(77)
Installation Fidle
(61)
Attestation
(13)
Présentation de saison
(11)
Séquence 1
(29)
Séquence 2
(81)
Séquence 2 : TP
(19)
Séquence 3
(52)
Séquence 4
(27)
Séquence 5
(16)
Séquence 6
(20)
Séquence 7
(19)
Séquence 8
(35)
Séquence 9
(12)
Séquence 10
(11)
Séquence 11
(19)
Séquence 13
(9)
Séquence 14
(7)
Séquence 15
(7)
Séquence 16
(11)
Séquence 17
(5)
Séquence 18
(6)
Séquence 19
(5)
JDLS 2023
(3)
Bienvenue sur Fidle Q&A, où vous pouvez poser des questions et recevoir des réponses d'autres membres de la communauté.
...